import numpy as np import time, datetime from datetime import datetime import pandas as pd data=pd.read_csv("/Users/liuyali/Desktop/data.csv") import time # print(data['企微存量好友数']) # m=z.dropna(subset=['企微存量好友数'])#删除制定列的空置 # print(m) # x = m["企微存量好友数"].mean() # print(x) #data["企微存量激活好友GMV"].fillna(x, inplace=True) #print(data) #print(data['date_time']) # data['日期']=data['日期'].astype('str') data['date_time'] = pd.to_datetime(data['date_time'],format='%Y-%m-%d') data.dropna(inplace=True) print(data) import matplotlib.pyplot as plt plt.plot(data['date_time'] ,data['企微存量好友数'] ) plt.show() grouped = data.groupby('性别',as_index=False).agg({'企微存量好友数': 'mean', '企微存量激活好友订单数': 'mean'}) print(grouped) #grouped=pd.DataFrame(grouped) print(grouped['性别']) import matplotlib.pyplot as plt plt.bar(grouped['性别'], grouped['企微存量好友数']) plt.xlabel("性别") plt.ylabel("企微存量好友数") plt.title("不同性别的企微存量好友数") plt.show()